Smoothness-Increasing Accuracy-Conserving (SIAC) filters for derivative approximations of discontinuous Galerkin (DG) solutions over nonuniform meshes and near boundaries
نویسندگان
چکیده
8 Accurate approximations for the derivatives are usually required in many application areas such as biomechanics, chemistry and visualization applications. With the help of Smoothness-Increasing AccuracyConserving (SIAC) filtering, one can enhance the derivatives of a discontinuous Galerkin solution. However, current investigations of derivative filtering are limited to uniform meshes and periodic boundary conditions, which do not meet practical requirements. The purpose of this paper is twofold: to extend derivative filtering to nonuniform meshes and propose position-dependent derivative filters to handle filtering near the boundaries. Through analyzing the error estimates for SIAC filtering, we extend derivative filtering to nonuniform meshes by changing the scaling of the filter. For filtering near boundaries, we discuss the advantages and disadvantages of two existing position-dependent filters and then extend them to position-dependent derivative filters, respectively. Further, we prove that with the position-dependent derivative filters, the filtered solutions can obtain a better accuracy rate compared to the original discontinuous Galerkin approximation with arbitrary derivative orders over nonuniform meshes. Oneand two-dimensional numerical results are provided to support the theoretical results and demonstrate that the position-dependent derivative filters, in general, enhance the accuracy of the solution for both uniform and nonuniform meshes.
منابع مشابه
Smoothness-Increasing Accuracy-Conserving Filters for Discontinuous Galerkin Solutions over Unstructured Triangular Meshes
The discontinuous Galerkin (DG) method has very quickly found utility in such diverse applications as computational solid mechanics, fluid mechanics, acoustics, and electromagnetics. The DG methodology merely requires weak constraints on the fluxes between elements. This feature provides a flexibility which is difficult to match with conventional continuous Galerkin methods. However, allowing d...
متن کاملEfficient Implementation of Smoothness-Increasing Accuracy-Conserving (SIAC) Filters for Discontinuous Galerkin Solutions
The discontinuous Galerkin (DG) methods provide a high-order extension of the finite volume method in much the same way as high-order or spectral/hp elements extend standard finite elements. However, lack of inter-element continuity is often contrary to the smoothness assumptions upon which many post-processing algorithms such as those used in visualization are based. Smoothness-increasing accu...
متن کاملGeneral spline filters for discontinuous Galerkin solutions
The discontinuous Galerkin (dG) method outputs a sequence of polynomial pieces. Post-processing the sequence by Smoothness-Increasing Accuracy-Conserving (SIAC) convolution not only increases the smoothness of the sequence but can also improve its accuracy and yield superconvergence. SIAC convolution is considered optimal if the SIAC kernels, in the form of a linear combination of B-splines of ...
متن کاملSmoothness-Increasing Accuracy-Conserving (SIAC) Filters for Discontinuous Galerkin Solutions: Application to Structured Tetrahedral Meshes
In this paper, we attempt to address the potential usefulness of smoothnessincreasing accuracy-conserving (SIAC) filters when applied to real-world simulations. SIAC filters as a class of post-processors were initially developed in Bramble and Schatz (Math Comput 31:94, 1977) and later applied to discontinuous Galerkin (DG) solutions of linear hyperbolic partial differential equations by Cockbu...
متن کاملSmoothness-Increasing Accuracy-Conserving (SIAC) Postprocessing for Discontinuous Galerkin Solutions over Structured Triangular Meshes
Theoretically and computationally, it is possible to demonstrate that the order of accuracy of a discontinuous Galerkin (DG) solution for linear hyperbolic equations can be improved from order k+1 to 2k+1 through the use of smoothness-increasing accuracy-conserving (SIAC) filtering. However, it is a computationally complex task to perform this in an efficient manner, which becomes an even great...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Computational Applied Mathematics
دوره 294 شماره
صفحات -
تاریخ انتشار 2016